国产成人精品久久,偷窥日本少妇撒尿com,少妇被粗大的猛烈进出免费视频,国产精品美女WWW爽爽爽视频

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁  >  技術(shù)文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時間:2021-11-30  |  點擊率:1836

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


天美传媒mv免费观看| 女人下边紧了好还是松点好| 天堂av国产av在线av| 潮喷失禁大喷水AⅤ无码| АⅤ资源中文在线天堂| 天天躁狠狠躁狠狠躁夜夜躁| 国产人妻人伦精品无码.麻豆| 日韩乱码人妻无码中文字幕久久| 绿帽娇妻肚子被灌满精怀孕| 免费无码不卡视频在线观看| 嗯灬啊灬把腿张开灬A片| 中国大肥胖VPSWINDOWS| 秋霞无码av久久久精品小说| 久久人人爽人人爽人人片| 无码少妇A片一区二区三区| 无码精品国产av在线观看| 波多野结衣家庭教师| 女人做爰全过程免费观看美女| 丰满人妻在公车被猛烈进入电影| 无码任你躁久久久久久老妇| 欧美性人人天天夜夜摸| 普通话丰满的少妇XXXXX野外 | 国偷自产一区二区免费视频| 少妇人体METCN| 曰曰摸日日碰夜夜爽歪歪| 韩国三级中文字幕HD久久精品| 日日躁夜夜躁狠狠躁| 少妇高潮抽搐无码久久av| 欧美成人电影| 亚洲精品无码久久久| 日产无人区一线二线三线新版| 开丫头小嫩苞疼死了| 日韩精品人妻系列无码专区免费 | 少妇极品熟妇人妻高清性色AV| 99E久热只有精品8在线直播| 国产男女无遮挡猛进猛出| 肉色超薄丝袜脚交一区二区| 成人试看120秒体验区| 欧美性受xxxx黑人xyx性爽| 被黑人猛烈30分钟视频| 久久久久亚洲AV无码观看|